Resin-based Solutions for Improved Surface Cure in LED Applications

Dr. Paul Share
Senior Product Development Scientist
Printing and Packaging

BASF Corporation
26701 Telegraph Road
Southfield, MI 48033
Tel: (248) 948-2395
Mobile: (734) 626-4395

2018 RadTech UV+EB, May 2018
Outline

I. Background and Theory

II. Effect of Molecular Structure on Reactivity

III. Flexo Ink Evaluations:
 I. Cure Response
 II. Resin Effects vs Photoinitiator Concentration

IV. Conclusion

V. Acknowledgements
Light absorption in solution: Lambert-Beer Law

\[I = I_0 \cdot 10^{-\varepsilon \cdot c \cdot l} \]

\[A = \varepsilon \cdot c \cdot l = \log \frac{I_0}{I} = -\log \frac{I}{I_0} \]

\(I/I_0 \): transmission = \(T \)

\(A = -\log T \)

Absorbed light = \(I_a = I_0 - I \)

\[I_a = I_0 \cdot (1 - 10^{-\varepsilon \cdot c \cdot l}) \]

\(\varepsilon \) depends on the wavelength: \(\varepsilon = \varepsilon(\lambda) \)

\(\varepsilon(\lambda) \) is characteristic of the electronic and optical properties of the chromophore

Assumptions: no reflection, no scattering, diluted solution

\(I_0 \): incident light intensity

\(I \): transmitted light intensity

A: absorbance of the solution

\(\varepsilon \): extinction coefficient of the solved substance (L \(\cdot \) mole\(^{-1} \cdot \) cm\(^{-1} \))

\(c \): concentration of the solution (mol \(/ \) L)

\(l \): path length (cm)
Absorption spectrum of red-shifted PI* and overlap with emission of mercury lamp

\[
\begin{align*}
\epsilon (313\text{nm}) &= 19900 \\
\epsilon (366\text{nm}) &= 1100
\end{align*}
\]

\[c = 0.001\% = 2.73 \times 10^{-5} \text{ mol/L}\]

\[l = 1 \text{ cm}\]

Emission spectrum of medium pressure Hg lamp (arbitrary units)

* 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1
Effect of concentration on light penetration at single wavelength

Example: 313 nm in a 50 µm clear coat
Common issues arising from poor absorption characteristics at longer wavelengths

- Poor surface cure
- Yellowing at high photoinitiator concentrations
- Significant increases in formulation costs with increasing photoinitiator levels
- Reduced formulation latitude
Oxygen Inhibition – Amine-modified Acrylates
Photocalorimetry Results using Broadband Mercury Source

Expected conversion based on structural factors

\% Conversion = \frac{\Delta H_{\text{exptl}}}{\Delta H_{\text{theoretical}}}

Percent Conversion

least

- DPHA
- EOTMPTA
- HRLV
- AM-1
- PE-1

most

Maximum Percent Double Bond Conversion

<table>
<thead>
<tr>
<th></th>
<th>DPHA</th>
<th>EOTMPTA</th>
<th>HRLV</th>
<th>AM-1</th>
<th>PE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Conversion</td>
<td>58</td>
<td>74</td>
<td>80</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>
Photocalorimetry Results using Broadband Mercury Source

Negative ΔH for amine-functional AM-1 suggests a change in reaction mechanism

Oxygen Sensitivity

least
- HRLV
- DPHA
- PE-1
- PE-2
- EOTMPTA
- AM-1

most

Average Difference in ΔH between Nitrogen and Air

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average ΔH Difference (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRLV</td>
<td>3</td>
</tr>
<tr>
<td>DPHA</td>
<td>10</td>
</tr>
<tr>
<td>PE-1</td>
<td>34</td>
</tr>
<tr>
<td>PE-2</td>
<td>87</td>
</tr>
<tr>
<td>EOTMPTA</td>
<td>90</td>
</tr>
<tr>
<td>AM-1</td>
<td>-24</td>
</tr>
</tbody>
</table>
Flexo Ink Study
390 nm @ 12 W in Air

Pigment Dispersion

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Acrylate</td>
<td>45.1</td>
</tr>
<tr>
<td>EOTMPTA</td>
<td>22.3</td>
</tr>
<tr>
<td>HMWD</td>
<td>3</td>
</tr>
<tr>
<td>Pigment</td>
<td>30</td>
</tr>
</tbody>
</table>

Dispersion Letdown

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion</td>
<td>50</td>
</tr>
<tr>
<td>Epoxy Acrylate</td>
<td>9-15</td>
</tr>
<tr>
<td>Test Resin</td>
<td>9-40</td>
</tr>
<tr>
<td>EOTMPTA</td>
<td>16-22</td>
</tr>
<tr>
<td>PI</td>
<td>7.5-10.0</td>
</tr>
</tbody>
</table>

All inks formulated to 750-1000 mPas and applied at 1.8µm

PI - Ethyl (2,4,6 – trimethylbenzoyl) phenyl phosphine
Effect of Resin Modification on Cure Response of Flexo Inks

Clear Correlation Between Level of Abstractable Hydrogens and Cure Response

![Graph showing the correlation between ink cure dose (mJ/cm²) and mmol a-H.](image-url)
Use of LED Resin to Enable Lower PI Use in Flexo Formulation

5 mmol/g α-H in ink equivalent to 25% reduction in photoinitiator concentration

Graph showing the relationship between Ink Cure Dose (mJ/cm²) and alpha-H (mmol/g) for different PI concentrations.
Conclusions

- Resin-based approaches can be highly successful in addressing the issues resulting from poor overlap between LED sources and photoinitiator absorption.
- Cure performance of UV LED Flexo ink formulations can be significantly improved.
- Through appropriate resin structure design and application, Flexo ink photoinitiator concentrations can be significantly reduced.
Acknowledgements

- Dr. Joseph Gianino
- David Chen
- Stephen Godlew
- Suzanne Dettling
- Emma Coury
- Monica Rasmussen
- Andrew Seecharan
- Dr. Jean-Luc Birbaum
- Dr. Devdatt Nagvekar
While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, they are provided for guidance only. Because many factors may affect processing or application/use, BASF recommends that the reader make tests to determine the suitability of a product for a particular purpose prior to use. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESCRIPTIONS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. In no case shall the descriptions, information, data or designs provided be considered a part of BASF's terms and conditions of sale. Further, the descriptions, designs, data, and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the descriptions, designs, data or information given or results obtained all such being given and accepted at the reader's risk.

© BASF Corporation, 2018